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Abstract 
 

Ceratina (Neoceratina) australensis, the Australian small carpenter bee, is 
socially polymorphic with both solitary and social nests present in the same population. 
Solitary nests contain a single adult female and her developing brood and social nests 
contain two adult females and their brood. Solitary nests tend to produce more offspring 
per female than social nests, but only when a species of parasitic wasp is absent. When 
the wasp is abundant, solitary nests suffer high levels of parasitism and loss of brood. 
Thus, solitary nests do worse in the presence of wasps and better in their absence. The 
parasitic wasp does better when solitary nests are common, and worse when they are rare. 
The interactions with this nest parasite are hypothesized to allow maintenance of both 
nest types in bee populations: when solitary nests are dense, the wasp increases in 
numbers, which leads to an advantage for social nests, and vice versa. To address this 
hypothesis, several mathematical models were developed to capture the biology of this 
system. The models were analyzed to determine whether a stable equilibrium with both 
social and solitary nests was possible. Such an equilibrium was found, but only for a very 
small region of the parameter space. This restriction might explain why the occurrence of 
socially polymorphic species, where the advantage of sociality is driven by 
predators/parasites, is rare.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



Introduction 
 

Several species are observed to be solitary- once an offspring is mature enough to 

live without the care of its parents, it ventures off alone. However, in some species, 

offspring don’t venture off alone but instead form groups, either staying with the parental 

group, which may include other related individuals or forming groups with unrelated 

individuals. Across different types of social groups, there exists a range of cooperation 

for foraging, caring for offspring, and defense. Living in groups has both benefits and 

costs. For example, shoaling behavior in fish is seen as a trade-off between a reduction in 

predation and increased competition for food (Hoare 2000). Evolutionary biologists have 

long studied why stable social groups only appear to exist in certain species. Much 

research has been done on the highly social species found in insects, such as ants, bees, 

wasps and termites (Wilson 1971). However, not all species in these groups are social, 

implying that the fitness consequences of group living must vary – sometimes it is 

favored and sometimes it isn’t. While progress can be made to understand the evolution 

of sociality by comparing social and nonsocial species using a comparative approach, a 

species that shows both group and solitary living allows the fitness effects of each to be 

directly measured. In this thesis, I consider a bee species that shows variation in group 

living. 

Ceratina (Neoceratina) australensis, the Australian small carpenter bee (Figure 1) 

is an oddity in the Ceratina genus because it has been observed to be socially 

polymorphic, with both social and solitary nests observed within a single population 

(Rehan 2010). The female bees build nests within dead giant fennel (Ferula communis) 

stems that resemble a hollow tube with four to five subunits (Figure 2). Both social and 

solitary bee nests have a single entrance. Social nests arise when the female bee that 

founded the nest (“the foundress’) acquires a nestmate. This nestmate is often a daughter 

bee that remains in her natal nest, giving the nest two ‘queens.’ The foundress and the 

nestmate create a division of labor within the nest. The foundress actively reproduces and 

forages while the nestmate remains to guard the entrance to the nest. The nestmate is, 

however, able to reproduce and will take ownership of the nest if the foundress dies.   

Social nesting insects have defense mechanisms that involve cooperation. In the 

caste system, the soldier caste may have enhanced physical traits to attack predators 



(Gruter 2012). Without a soldier caste, organisms may display aggressive behavior or 

release alarm pheromones. One defense mechanism involves guarding the entrance to the 

nest. Theoretically, if the entrance is blocked then a predator can’t enter the nest as easily, 

or at all. Solitary nests, however, are likely to be much more susceptible to predation 

because one queen can’t stay at the entrance defending the nest and also forage so that 

she can nurture her offspring efficiently.  

One hypothesis for the evolution of sociality in C. australensis is as a defense 

against predation by a species of chalcid wasp from the genus Eurytoma (Figure 3). This 

parasitoid wasp reproduces by laying eggs in bee larvae. Wasps then hatch and feed on 

the bee larvae, resulting in their death. A nest is most likely to become parasitized when 

the nest entrance is unguarded. For nests with one queen, this occurs whenever it leaves 

to gather food. Therefore, having two queen bees in a nest is expected to provide an 

advantage against predation and increase the survival of larvae (Rehan 2010, 2014).  

To test whether wasp predation can favor the evolution of sociality in bees, we 

modeled a three variable system, explicitly following social bees, solitary (asocial) bees, 

and wasps. We created a system of three difference equations, one for each species and 

then varied the parameters of the model to examine how mortality, reproduction and 

parasitism rates altered the outcomes. We used analytical approaches, numerical 

approaches, and simulations to gain insight into the behavior of the model. The model 

included all of the parameters that are likely to affect the evolution of sociality in this 

system (Table 1.2). A constraint we placed on the parameters of the model, based on the 

biology of the interaction, was that survival of larvae in social nests was better than in 

solitary nests with parasitism but was worse without parasitism. In addition to 

determining when sociality was favored, we were especially interested in determining 

whether there are conditions under which both solitary and social bees, and their wasp 

parasitoids can be maintained in the population.  

 

 

 

 

 



Methodology 

Table 1.1: Variables 

Variable Definition 

S[t] The number of social nests at time t 

A[t] The number of solitary nests at time t 

W[t] The number of wasps at time t 

 

Table 1.2: Parameters 

Parameter Definition Range 

k Maximum parasitism rate [0,1] 

Z Number of wasps to achieve 

50% parasitism 

(0,∞) 

m Bee mortality rate [0,1) 

mW Wasp mortality rate [0,1) 

bW Wasp birth rate  

bau # of bees that emerge from 

a solitary unparasitized nest 

 

bap # of bees that emerge from 

a solitary parasitized nest 

 

bsu # of bees that emerge from 

a social unparasitized nest 

 

bsp # of bees that emerge from 

a social parasitized nest 

 

Assumptions: 2bau > bsu ≥ bau > bsp > bap ≥ 0 

 

 

 

 

 

 

 



Model Building 

The life cycle (Figures 4 and 5) consists of surviving adult bees building nests and 

laying eggs, which then hatch into larvae if they are not parasitized. Larvae become 

adults in the nest and then these adults leave the nests in order to build new ones that will 

start the next generation. Bee mortality occurs after bees leave the nest and before they 

begin building a new nest. Eggs parasitized by wasps die. We censured the life cycle 

when offspring emerged from the nests. All nests in a population were synchronous. Each 

generation thus follows the same cycle: a portion of the adult bees die and then the 

survivors build nests (either social or solitary/antisocial). Some of the nests are 

parasitized, which depends on the density of wasps in the area. Parasitized nests produce 

fewer offspring than unparasitized nests. In addition, solitary nests lose more offspring 

when they are parasitized than do social nests. These assumptions imply that larval 

production is such that unparasitized, solitary nests (bau) > unparasitized, social nests 

(bsu) > parasitized, social nests (bsp) > parasitized, solitary nests (bap). Bee birth rate 

was assumed to be density dependent, implying it is resource limited perhaps due to 

pollen or nectar availability. Mathematically, we simply divided bee birth rate parameters 

by the total bee population (using one individual per solitary nest and two per social nest) 

plus a constant value of 1. As the bee population increases, birth rate declines. We used 

the variable A to track asocial/solitary bees and the variable S to track social bees.  

Wasp reproduction is dependent on how many bee nests are in the area, how 

protected (social versus solitary) the nests are, how many bee larvae are in the nests, and 

how many eggs one female wasp can lay per bee larvae.  

An appropriate method to model this system is using a nonlinear discrete time 

model where the parameter t would represent the number of generations.  

The software program Mathematica (Wolfram Mathematica 11 Student Edition, 

version 11.3.0.0) was used to run all our simulations and help with equilibrium 

identification and stability analyses. For numerical analyses, we wrote functions that 

calculated the equilibria and their stability for various parameter inputs. For the 

simulations, we followed the frequencies of the three variables for various parameter 

values. For numerical analyses, we used randomly chosen parameter combinations to 

determine how frequently particular equilibria existed and their stability. 



Model Analysis 

Since field experiments have shown the existence of social nests, solitary nests, 

and wasps coexisting within an area, we sought to see if our nonlinear discrete time 

model showed such an equilibrium. In theory, these are all the possible equilibria of our 

system, where a non-zero entry indicates a positive value at equilibrium: 

 

 

 

 

 

 

 

 

 

 

To determine if these equilibria existed in our system, we used Mathematica to 

solve for the equilibria. An equilibrium is defined as the values of the variables (Â, Ŝ and 

Ŵ) at which their frequencies do not change from one generation to the next, ie A[t+1] = 

A[t] = Â, S[t+1] = S[t] = Ŝ, and W[t+1] =W[t] = Ŵ. These were the six equilibria that 

were found to be possible, given the biological constraints on the parameters:  

 

 

 

 

 

 

 

	

																																																								
1	See Appendix for values of Â and Ŵ 	
2	See Appendix for values of Ŝ and Ŵ 	
3	See Appendix for values of Â, Ŝ, and Ŵ 	

Equilibrium point as (A[t], S[t], W[t]) 

(0, 0, 0) 

(Â, 0, 0) 

(0, Ŝ, 0) 

(0, 0, Ŵ) 

(Â, Ŝ, 0) 

(Â, 0, Ŵ) 

(0, Ŝ, Ŵ) 

(Â, Ŝ, Ŵ) 

Equilibrium point as (A[t], S[t], W[t]) 

1.(0, 0, 0) 

2.(!"#(!!!)!!
!

, 0, 0) 

3.(0, !"#(!!!)!!"
!"

, 0) 

4.(Â, 0, Ŵ)1 

5.(0, Ŝ, Ŵ)2 

6.(Â, Ŝ, Ŵ)3 



Note that for equilibria 4, 5 and 6, the values of Â, Ŝ and Ŵ are too complicated to 

include in the table.  

Two of the possible equilibria did not exist in our system. The equilibrium (0, 0, 

Ŵ) does not exist because wasps need bee larvae in order to reproduce, so they cannot 

persist in their absence. The equilibrium (Â, Ŝ, 0) does not exist because in the absence of 

wasps, all bee nests are unparasitized and so social bees lose out to solitary bees. Since 

bau > bsu, the solitary population will always outperform the social population in the 

absence of wasps. 

To test the existence and stability of these equilibria, we found the characteristic 

polynomial of the Jacobian of our three equations. The characteristic polynomial is used 

to determine the eigenvalues of the linearized system at the equilibrium. If any of the 

eigenvalues is greater than one, the equilibrium is unstable and a population is not 

expected to remain there. For complex eigenvalues (λ = α + βi), the equivalent condition 

for instability is that 𝛼! + 𝛽! > 1. If all of the eigenvalues are less than one, the 

equilibrium is stable and a population is expected to remain at that equilibrium 

indefinitely. The non-evaluated Jacobian, J (A, S, W), is shown in the appendix. Below 

are examples of the Jacobian evaluated at certain equilibrium points (from above). 

	
J (0, 0, 0) =  

 
J (Â, 0, 0) =  

	
J (0, Ŝ, 0) = 

	
	
	

-(1 + bau) (-1 + m) 0 0
0 - 1

2
(2 + bsu) (-1 + m) 0

0 0 0

bau (-1+m)2+m2

bau-bau m
m �-1 + m

bau-bau m
� �bap-bau� k �bau (-1+m)+m� �-1+mW�

bau Z

0 1 + �-1 + bsu
2 bau

� m 0

0 0 - �bap-bau� bW k �bau (-1+m)+m� �-1+mW�
bau Z

1 + �-1 + 2 bAU
bsu

� m 0 0

m �-1 + 2 m
bsu-bsu m

� bsu (-1+m)2+2 m2

bsu-bsu m
�bsp-bsu� k �bsu (-1+m)+2 m� �-1+mW�

2 bsu Z

0 0 - �bsp-bsu� bW k �bsu (-1+m)+2 m� �-1+mW�
2 bsu Z



Results	

 To analyze the stability of the equilibria, we first determined the characteristic 

polynomial by taking the determinant of [J (A, S, W)-λI], where J(A, S, W) is the 

Jacobian, I is a 3 by 3 identity matrix, and λ is the variable lambda. The values of lambda 

that make the characteristic polynomial at each equilibrium zero are the eigenvalues for 

perturbations around the equilibrium. Each equilibrium had three corresponding lambda 

values (corresponding to perturbations in social bees, asocial bees and wasps). 

 

The Zero State 

The (0, 0, 0) equilibrium exists when there are no bees or wasps in a certain area. 

By evaluating the Jacobian at (0,0,0), we discovered its eigenvalues that help determine 

when rare bees or wasps could establish a new colony. 

There were three eigenvalues found for this equilibrium. The first eigenvalue is λ1 

= bau (1-m)+(1-m). If the birth survival rate of solitary bees is greater than the mortality 

rate (bau (1-m) > m), λ1 is greater than 1. The second eigenvalue is λ2 = (1/2)bsu(1-

m)+2(1-m) and λ2 is greater than one when bsu(1-m)-2m>0. The third eigenvalue is λ3 = 

0. This means that a rare wasp cannot invade a new area but solitary and social bees can 

if their birth rates are high enough to overcome non-parasitoid induced mortality. 

 

Solitary Bees Only 

 The (Â, 0, 0) equilibrium exists when bau (1-m) > m or when the birth rate is 

higher than the death rate. We evaluated the Jacobian at this equilibrium and found three 

eigenvalues. The first eigenvalue is λ1 = 1−m+ ( !"#
!"#$

)m. Since bsu < 2bau, the third 

term is less than m and so the sum of λ1 is less than 1. This eigenvalue is the one that is 

associated with the introduction of social bees and indicates that in the absence of wasps, 

social bees cannot invade a population of solitary bees.  The second eigenvalue was λ2 = 
!"#(!!!)!!!!

!"#(!!!)
, which is less than one. This was found by manipulating the fraction: 

bau(1-m)2 + m2 – bau(1-m) < 0 à -m bau(1-m)+m2 < 0, which is true because bau(1-m) 

> m for (Â, 0, 0) to exist and therefore the first term is more negative than m2. Since λ2 is 

less than one, (Â, 0, 0) is stable to perturbations of A (solitary bees). Basically, when 



solitary bees are at this equilibrium their birth and death rates are equal. Above the 

equilibrium, birthrates decline and below, they increase due to density dependence. The 

third eigenvalue is λ3 = (!"#!!"#)!"#(!"#(!!!)!!)(!!!")
!"#$

, which can be either greater 

than or less than one. This eigenvalue is more likely to be greater than one under the 

following conditions: small Z, small mW, large (bau-bap), large bW, and large k. That is, 

when wasps are good at finding nests and produce a lot of offspring, they will invade. If 

all three eigenvalues are less than one, then the (Â, 0, 0) equilibrium is globally stable. 

 

Social Bees Only 

 The (0, Ŝ, 0) equilibrium exists when bsu(1-m) > 2m, that is the birth rate must be 

higher than the death rate. We evaluated the Jacobian at this equilibrium and found three 

eigenvalues. The first eigenvalue is λ1 = 1−m+ (!"#$
!"#

)m, which is greater than one 

because since bsu < 2bau, the third term is greater than m and so the total sum is greater 

than one. This means that a population of only social bees is unstable to the invasion of 

solitary bees, which makes sense based on the biology of the system (social nesting is 

advantageous only in the presence of wasps). The second eigenvalue was λ2 = 
!"#(!!!)!!!!!

!"#(!!!)
, which is less than one. This was found by manipulating the fraction: 

bsu(1-m)2 + 2m2 – bsu(1-m) < 0 à -m bsu(1-m) + 2m2 < 0, which is true because bsu(1-

m) > 2m for (0, Ŝ, 0) to exist and therefore the first term is more negative than 2m2. Since 

λ2 is less than one, (0, Ŝ, 0) is stable to perturbations of S (social bees). As for the solitary 

equilibrium, this result is due to the density dependence of the birth rate. The third 

eigenvalue was λ3 = (!"#!!"#)!"#(!"#(!!!)!!")(!!!")
!"#$%

, which can be either greater than 

or less than one. This eigenvalue is more likely to be greater than one under the following 

conditions: small Z, small mW, large (bau-bap), large bW, and large k, as before. Since 

λ1 is always greater one, the (0, Ŝ, 0) equilibrium is globally unstable. 

 

Two Variable and Three Variable State 

 The (Â, 0, Ŵ), (0, Ŝ, Ŵ), and (Â, Ŝ, Ŵ) equilibria were too complex for us to 

easily evaluate the Jacobian and find the eigenvalues. However, simulations showed that 

these equilibria do exist under certain parameter conditions and that they can be stable. 



Simulations 

 To examine the likelihood of obtaining different outcomes, we created a 

Mathematica function that randomly chose all the parameter values and then determined 

all equilibria and their stability. We performed ten thousand simulations with randomly 

drawn parameter combinations and found the following:  

	
Equilibria Present Number Stable Equilibria* 

{(0,0,0)} 1500 (0, 0, 0) 

{(0,0,0), (Â,0,0)} 1455 (Â, 0, 0) 

{(0,0,0), (Â,0,0), (Â,0,Ŵ)} 20 (Â, 0, Ŵ) 

{(0,0,0), (0,Ŝ,0), (Â,0,0)} 6131 (Â, 0, 0) 

{(0,0,0), (Â,0,0), (0,Ŝ,0), (Â,0,Ŵ)} 769 (Â, 0, Ŵ) 

{(0,0,0), (Â,0,0), (0,Ŝ,0), (Â,0,Ŵ), (Â,Ŝ,Ŵ)} 15 (Â, Ŝ, Ŵ) 

{(0,0,0), (Â,0,0), (0,Ŝ,0), (Â,0,Ŵ), (0,Ŝ,Ŵ)} 101 (Â, 0, Ŵ) 

{(0,0,0), (Â,0,0), (0,Ŝ,0), (Â,0,Ŵ), (0,Ŝ,Ŵ), (Â,Ŝ,Ŵ)} 9 (Â, Ŝ, Ŵ) 

* all other equilibria are unstable	
 

These data indicate that 15% of randomly drawn parameter combinations have 

birth and death rates that prevent bees from replacing themselves in the absence of wasps. 

Another ~15% of parameter combinations have values that prevent wasps from replacing 

themselves, even when all bees are solitary. Together, these 30% of simulations are of 

little biological interest since they represent cases where each species cannot actually 

exist under any conditions. In the remaining simulations, loss of the wasp is the most 

common occurrence, occurring 87% of the time (6131 of 7045 simulations). While this 

tells us something about the difficulty of maintain a specialist parasitoid wasp, in nature 

both species co-exist and so it is the remaining 914 simulations that are our main interest. 

Within this group, the most common outcome is coexistence of the solitary bee with the 

wasp, occurring in ~97% of outcomes (890 of 914 simulations). In only ~3% of situations 

in which both the bee and wasp coexist at equilibrium is the social bee expected to be 

present. In all 24 cases in which an equilibrium with the social bee is stable, the solitary 

bee is also present. 

 



Discussion 

 Our research has determined that there are conditions under which bees and wasps 

can coexist. When that happens, it is most likely that all of the bees that prevail will be 

solitary. Rarely, there can be both solitary and social bees with their wasp parasitoids 

maintained in the population. This suggests that one of the reasons for rarely observing 

mixed strategies within a single population is that it is rare that the parameters will be just 

right to give such an equilibrium. Overall, we find that the conditions for the maintenance 

of both bee types includes relatively high parasitism (k > 0.5) and wasp birthrate (bW) 

but relatively low bee (m < 0.5) and wasp (mW < 0.5) mortality.  

Why do solitary bees tend to be stably maintained in populations, while social 

bees lose out? To answer the question, it is worth considering what happens with the 

wasp. When social bees are doing well, wasp parasitism declines and so wasp density 

declines. Declines in wasp densities leads to a decline in wasp parasitism. Thus an 

equilibrium with wasps and social bees is likely to be readily invaded by solitary bees 

because of the low parasitism. This conjecture is supported by the fact that we never saw 

an equilibrium with just social bees and wasps that was stable to the invasion of solitary 

bees.  

 The next steps in this modeling effort are twofold. First will be to use 

experimental estimates of the parameters from the Ceratina (Neoceratina) australensis 

and Eurystoma sp. interaction to see if they predict a stable equilibrium containing both 

bee types. Second is to use the insight gained regarding stability from the simulations to 

help with the analytical proofs for the existence and stability of all equilibria.  

 

 

 

 

 

 

 

 

 



Appendix 

Equations Represented in a Module 

 
 

Jacobian 

J(A, S, W)= 

  

Beesandwaspsgraphed[a0_, s0_, w0_, k_, Z_, m_, mW_, bau0_, bap0_, bsu0_, bsp0_, bW_, gens_] := Module�{A, S, W},

A[0] = a0; (*antisocial nests at time 0*)
S[0] = s0; (*social nests at time 0*)
W[0] = w0; (*wasps at time 0*)

(*recursions for bees*)

A[t_] := A[t] = (1 - m) (A[t - 1]) + (bau0 /(1 + A[t - 1] + S[t - 1])) A[t - 1] (1 - m) 1 -
k (1 - mW) W[-1 + t]
Z + (1 - mW) W[-1 + t]

+

(bap0 /(1 + A[t - 1] + S[t - 1])) A[t - 1] (1 - m) k (1 - mW) W[-1 + t]
Z + (1 - mW) W[-1 + t]

;

S[t_] := S[t] = (1 - m) (S[t - 1]) + (bsu0 /(1 + A[t - 1] + S[t - 1])) (S[t - 1]/2) (1 - m) 1 -
k (1 - mW) W[-1 + t]
Z + (1 - mW) W[-1 + t]

+

(bsp0 /(1 + A[t - 1] + S[t - 1])) (S[t - 1]/2) (1 - m) k (1 - mW) W[-1 + t]
Z + (1 - mW) W[-1 + t]

;

(*recursion for wasps*)
W[t_] :=
W[t] = (k *(1 - mW) W[t - 1]/(Z + (1 - mW) W[t - 1]))

((1 - m) (A[t - 1]) bW ((bau0 - bap0)/(1 + A[t - 1] + S[t - 1])) + (1 - m) (S[t - 1]/2) bW ((bsu0 - bsp0)/(1 + A[t - 1] + S[t - 1])));

MatrixForm[{" = last social " ToString[S[gens]], " = last antisocial " ToString[A[gens]], " = last wasp " ToString[W[gens]],
" = maximum parasitism rate" ToString[k], " = number of wasps to give 50% parasiticm" ToString[Z], " = mortality rate of bees" ToString[m],
" = mortality rate of wasps" ToString[mW], " = birth rate of unparasitized, solitary bees" ToString[bau0],
" = birth rate of parasitized, solitary bees" ToString[bap0], " = birth rate of unparasitized, social bees" ToString[bsu0],
" = birth rate of parasitized, social bees" ToString[bsp0], " = birth rate of wasps" ToString[bW], "Antisocial = blue line",
"Social = red line", "Wasps = green line",
ListPlot[{Table[{i, A[i]}, {i, 0, gens}], Table[{i, S[i]}, {i, 0, gens}], Table[{i, W[i]}, {i, 0, gens}]},
AxesLabel → {"Generations", "Population Size"}, PlotStyle → {Blue, Red, Green}, Joined → True, ImageSize → 375]}

]

�

��-
(-1 + m) �(-1 + mW) �A2 + 2 A (1 + S) - (-1 + bAU (-1 + kw) - bAP kw - S) (1 + S)� W - �A2 + 2 A (1 + S) + (1 + S) (1 + bAU + S)� Z�

(1 + A + S)2 ((-1 + mW) W - Z)
,

-
A (-1 + m) (-bAP kw (-1 + mW) W + bAU ((-1 + kw) (-1 + mW) W + Z))

(1 + A + S)2 ((-1 + mW) W - Z)
, A (bAP - bAU) kw (-1 + m) (-1 + mW) Z

(1 + A + S) (W - mW W + Z)2
�, �-

(-1 + m) S (-bSP kw (-1 + mW) W + bSU ((-1 + kw) (-1 + mW) W + Z))
2 (1 + A + S)2 ((-1 + mW) W - Z)

,

-
1

2 (1 + A + S)2 ((-1 + mW) W - Z)
(-1 + m) �(-1 + mW) �2 + 2 A2 + bSU + bSP kw - bSU kw + 4 S + 2 S2 + A (4 + bSU + bSP kw - bSU kw + 4 S)� W - �2 A2 + bSU + 2 (1 + S)2 + A (4 + bSU + 4 S)� Z�,

(bSP - bSU) kw (-1 + m) (-1 + mW) S Z
2 (1 + A + S) (W - mW W + Z)2

�, �
bW kw (-1 + m) (-1 + mW) ((-bSP + bSU) S + 2 bAP (1 + S) - 2 bAU (1 + S)) W

2 (1 + A + S)2 ((-1 + mW) W - Z)
,

(bSP + A (-2 bAP + 2 bAU + bSP - bSU) - bSU) bW kw (-1 + m) (-1 + mW) W
2 (1 + A + S)2 ((-1 + mW) W - Z)

, -
bW kw (-1 + m) (-1 + mW) (2 A (bAP - bAU) + (bSP - bSU) S) Z

2 (1 + A + S) (W - mW W + Z)2
��



Equilibria 

(Â, 0, Ŵ): 

Â =

 
Ŵ = 

 
(0, Ŝ, Ŵ); 

Ŝ =	

 

-
1

2 (bap - bau) bW k m (-1 + mW)2

�-bap bau bW k + bau2 bW k - bap2 bW k2 + 2 bap bau bW k2 - bau2 bW k2 + bap bW k m - bau bW k m + bap bau bW k m - bau2 bW k m +

bap2 bW k2 m - 2 bap bau bW k2 m + bau2 bW k2 m + 2 bap bau bW k mW - 2 bau2 bW k mW + 2 bap2 bW k2 mW - 4 bap bau bW k2 mW +

2 bau2 bW k2 mW - 2 bap bW k m mW + 2 bau bW k m mW - 2 bap bau bW k m mW + 2 bau2 bW k m mW - 2 bap2 bW k2 m mW +

4 bap bau bW k2 m mW - 2 bau2 bW k2 m mW - bap bau bW k mW2 + bau2 bW k mW2 - bap2 bW k2 mW2 + 2 bap bau bW k2 mW2 -

bau2 bW k2 mW2 + bap bW k m mW2 - bau bW k m mW2 + bap bau bW k m mW2 - bau2 bW k m mW2 + bap2 bW k2 m mW2 - 2 bap bau bW k2 m mW2 +

bau2 bW k2 m mW2 - bap k Z + bau k Z + bap k mW Z - bau k mW Z +
√�(-1 + mW)2

�4 (bau (-1 + k) - bap k) Z (bap bW k (bau (-1 + m) + m) (-1 + mW) + bau (-bW k m (-1 + mW) + bau bW k (-1 + m + mW - m mW) + Z)) +

�bap2 bW k2 (-1 + m) (-1 + mW) + bap k (-bau bW (-1 + 2 k) (-1 + m) (-1 + mW) + bW m (-1 + mW) + Z) +

bau (bW k m + bau bW (-1 + k) k (-1 + m) (-1 + mW) - bW k m mW + 2 Z - k Z)�2���

-
1

2 (bau (-1 + k) - bap k) (-1 + mW)2

�-bap bau bW k + bau2 bW k - bap2 bW k2 + 2 bap bau bW k2 - bau2 bW k2 + bap bW k m - bau bW k m + bap bau bW k m - bau2 bW k m +

bap2 bW k2 m - 2 bap bau bW k2 m + bau2 bW k2 m + 2 bap bau bW k mW - 2 bau2 bW k mW + 2 bap2 bW k2 mW - 4 bap bau bW k2 mW +

2 bau2 bW k2 mW - 2 bap bW k m mW + 2 bau bW k m mW - 2 bap bau bW k m mW + 2 bau2 bW k m mW - 2 bap2 bW k2 m mW +

4 bap bau bW k2 m mW - 2 bau2 bW k2 m mW - bap bau bW k mW2 + bau2 bW k mW2 - bap2 bW k2 mW2 + 2 bap bau bW k2 mW2 -

bau2 bW k2 mW2 + bap bW k m mW2 - bau bW k m mW2 + bap bau bW k m mW2 - bau2 bW k m mW2 + bap2 bW k2 m mW2 - 2 bap bau bW k2 m mW2 +

bau2 bW k2 m mW2 - 2 bau Z - bap k Z + bau k Z + 2 bau mW Z + bap k mW Z - bau k mW Z +
√�(-1 + mW)2

�4 (bau (-1 + k) - bap k) Z (bap bW k (bau (-1 + m) + m) (-1 + mW) + bau (-bW k m (-1 + mW) + bau bW k (-1 + m + mW - m mW) + Z)) +

�bap2 bW k2 (-1 + m) (-1 + mW) + bap k (-bau bW (-1 + 2 k) (-1 + m) (-1 + mW) + bW m (-1 + mW) + Z) +

bau (bW k m + bau bW (-1 + k) k (-1 + m) (-1 + mW) - bW k m mW + 2 Z - k Z)�2���

-
1

4 (bsp - bsu) bW k m (-1 + mW)2

�-bsp bsu bW k + bsu2 bW k - bsp2 bW k2 + 2 bsp bsu bW k2 - bsu2 bW k2 + 2 bsp bW k m - 2 bsu bW k m + bsp bsu bW k m - bsu2 bW k m +

bsp2 bW k2 m - 2 bsp bsu bW k2 m + bsu2 bW k2 m + 2 bsp bsu bW k mW - 2 bsu2 bW k mW + 2 bsp2 bW k2 mW - 4 bsp bsu bW k2 mW +

2 bsu2 bW k2 mW - 4 bsp bW k m mW + 4 bsu bW k m mW - 2 bsp bsu bW k m mW + 2 bsu2 bW k m mW - 2 bsp2 bW k2 m mW +

4 bsp bsu bW k2 m mW - 2 bsu2 bW k2 m mW - bsp bsu bW k mW2 + bsu2 bW k mW2 - bsp2 bW k2 mW2 + 2 bsp bsu bW k2 mW2 -

bsu2 bW k2 mW2 + 2 bsp bW k m mW2 - 2 bsu bW k m mW2 + bsp bsu bW k m mW2 - bsu2 bW k m mW2 + bsp2 bW k2 m mW2 -

2 bsp bsu bW k2 m mW2 + bsu2 bW k2 m mW2 - 2 bsp k Z + 2 bsu k Z + 2 bsp k mW Z - 2 bsu k mW Z +
√�(-1 + mW)2

�-8 (bsu (-1 + k) - bsp k) (-bsp bW k (bsu (-1 + m) + 2 m) (-1 + mW) + bsu (bsu bW k (-1 + m) (-1 + mW) + 2 bW k m (-1 + mW) - 2 Z)) Z +

�bsp2 bW k2 (-1 + m) (-1 + mW) + bsu (2 bW k m + bsu bW (-1 + k) k (-1 + m) (-1 + mW) - 2 bW k m mW + 4 Z - 2 k Z) +

bsp k (-bsu bW (-1 + 2 k) (-1 + m) (-1 + mW) + 2 (bW m (-1 + mW) + Z))�2���



Ŵ =	

 
(Â, Ŝ, Ŵ): 

Â = 

 
Ŝ =	

 
Ŵ =		

 
  

-
1

4 (bsu (-1 + k) - bsp k) (-1 + mW)2

�-bsp bsu bW k + bsu2 bW k - bsp2 bW k2 + 2 bsp bsu bW k2 - bsu2 bW k2 + 2 bsp bW k m - 2 bsu bW k m + bsp bsu bW k m - bsu2 bW k m +

bsp2 bW k2 m - 2 bsp bsu bW k2 m + bsu2 bW k2 m + 2 bsp bsu bW k mW - 2 bsu2 bW k mW + 2 bsp2 bW k2 mW - 4 bsp bsu bW k2 mW +

2 bsu2 bW k2 mW - 4 bsp bW k m mW + 4 bsu bW k m mW - 2 bsp bsu bW k m mW + 2 bsu2 bW k m mW - 2 bsp2 bW k2 m mW +

4 bsp bsu bW k2 m mW - 2 bsu2 bW k2 m mW - bsp bsu bW k mW2 + bsu2 bW k mW2 - bsp2 bW k2 mW2 + 2 bsp bsu bW k2 mW2 -

bsu2 bW k2 mW2 + 2 bsp bW k m mW2 - 2 bsu bW k m mW2 + bsp bsu bW k m mW2 - bsu2 bW k m mW2 + bsp2 bW k2 m mW2 -

2 bsp bsu bW k2 m mW2 + bsu2 bW k2 m mW2 - 4 bsu Z - 2 bsp k Z + 2 bsu k Z + 4 bsu mW Z + 2 bsp k mW Z - 2 bsu k mW Z +
√�(-1 + mW)2

�-8 (bsu (-1 + k) - bsp k) (-bsp bW k (bsu (-1 + m) + 2 m) (-1 + mW) + bsu (bsu bW k (-1 + m) (-1 + mW) + 2 bW k m (-1 + mW) - 2 Z)) Z +

�bsp2 bW k2 (-1 + m) (-1 + mW) + bsu (2 bW k m + bsu bW (-1 + k) k (-1 + m) (-1 + mW) - 2 bW k m mW + 4 Z - 2 k Z) +

bsp k (-bsu bW (-1 + 2 k) (-1 + m) (-1 + mW) + 2 (bW m (-1 + mW) + Z))�2���

-��(bsp - bsu)2 bW (bsu + bsp k - bsu k) m (-1 + mW) +

2 bau2 �bsp2 bW (-1 + k) (-1 + m) (-1 + mW) - bsp bsu bW (-1 + k) (-1 + m) (-1 + mW) + 2 bsu bW m (-1 + k + mW - k mW) +

2 bsp (bW (-1 + k) m (-1 + mW) + Z)� +

bau (bsp - bsu) �-bsp bsu bW (-1 + k) (-1 + m) (-1 + mW) + bsp2 bW k (-1 + m) (-1 + mW) + 4 bsu bW m (-1 + k + mW - k mW) +

2 bsp (bW (-1 + 2 k) m (-1 + mW) + Z)� -

bap (bsp - bsu) �-bsu2 bW (-1 + k) (-1 + m) (-1 + mW) + bsp bsu bW k (-1 + m) (-1 + mW) + 4 bsp bW k m (-1 + mW) +

2 bsu (bW m (-1 - 2 k (-1 + mW) + mW) + Z)� -

2 bap bau �-bsu2 bW (-1 + k) (-1 + m) (-1 + mW) + bsp2 bW k (-1 + m) (-1 + mW) + bsp bsu bW (-1 + m + mW - m mW) +

2 bsp (bW (-1 + 2 k) m (-1 + mW) + Z) + 2 bsu (bW m (-1 - 2 k (-1 + mW) + mW) + Z)� +

2 bap2 (bsp bW k (bsu (-1 + m) + 2 m) (-1 + mW) + bsu (-2 bW k m (-1 + mW) + bsu bW k (-1 + m + mW - m mW) + 2 Z))��

�(2 bap - 2 bau - bsp + bsu)2 bW (bsu + 2 bau (-1 + k) + (-2 bap + bsp) k - bsu k) m (-1 + mW)��

�2

�2 bap3 bW k (bsu (-1 + m) + 2 m) (-1 + mW) +

bap2 �bsu2 bW (-1 + k) (-1 + m) (-1 + mW) - 4 bsp bW k m (-1 + mW) -

2 bau bW (bsp k (-1 + m) + bsu (-1 + 2 k) (-1 + m) + 2 (-1 + 3 k) m) (-1 + mW) + bsp bsu bW k (-1 + m + mW - m mW) +

2 bsu (bW (-1 + 2 k) m (-1 + mW) + Z)� +

bau �-2 bau2 bW (-1 + k) (bsp (-1 + m) + 2 m) (-1 + mW) - (bsp - bsu) (bsp bW k m (-1 + mW) + bsu bW m (-1 + k + mW - k mW) - bsp Z) +

bau �bsp bsu bW (-1 + k) (-1 + m) (-1 + mW) + 4 bsu bW (-1 + k) m (-1 + mW) + bsp2 bW k (-1 + m + mW - m mW) +

2 bsp (bW m (-1 - 2 k (-1 + mW) + mW) + Z)�� +

bap �2 bau2 bW (bsu (-1 + k) (-1 + m) + bsp (-1 + 2 k) (-1 + m) + 2 (-2 + 3 k) m) (-1 + mW) +

(bsp - bsu) (bsp bW k m (-1 + mW) - bsu (bW (-1 + k) m (-1 + mW) + Z)) +

bau �bsp2 bW k (-1 + m) (-1 + mW) + bsp (bsu bW (-1 + m) (-1 + mW) + 2 bW (-1 + 4 k) m (-1 + mW) - 2 Z) +

bsu (-bsu bW (-1 + k) (-1 + m) (-1 + mW) - 2 (bW (-3 + 4 k) m (-1 + mW) + Z))�����

�(2 bap - 2 bau - bsp + bsu)2 bW (bsu + 2 bau (-1 + k) + (-2 bap + bsp) k - bsu k) m (-1 + mW)�

(-2 bau + bsu) Z
(bsu + 2 bau (-1 + k) + (-2 bap + bsp) k - bsu k) (-1 + mW)



Figures 

 
Figure 1: A close-up photo of Ceratina (Neoceratina) australensis, the Australian small 

carpenter bee. Credit: Marc Newman 
 

 
Figure 2: The nest of an Australian small carpenter bee in a giant fennel stem.  

Credit: Sandra Rehan, The Rehan Lab @ UNH 



 
Figure 3: A species of chalcid wasps from the genus Eurytoma. Credit: waspweb.org 

 
 



 
Figure 4: The above flowchart represents the life cycle of a solitary bee population. Adult 

bees that survive mortality become nesting adult bees. These adults produced eggs that 

have a chance of being parasitized. When nests are parasitized, not all bee larvae survive. 

Those that do survive, give rise to bees and those who don’t survive, give rise to wasps. 

Bee larvae from nests that are not parasitized give rise to all bees. 



 
Figure 5: The above flowchart represents the life cycle of a social bee population. Adult 

bees that survive mortality become nesting adult bees. These adults produced eggs that 

have a chance of being parasitized. When nests are parasitized, not all bee larvae survive. 

Those that do survive, give rise to bees and those who don’t survive, give rise to wasps. 

Bee larvae from nests that are not parasitized give rise to all bees. 
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